Static (or Simultaneous-Move) Games of Complete Information

Introduction to Games
Normal (or Strategic) Form Representation
Outline of Static Games of Complete Information

- Introduction to games
- Normal-form (or strategic-form) representation
- Iterated elimination of strictly dominated strategies
- Nash equilibrium
- Review of concave functions, optimization
- Applications of Nash equilibrium
- Mixed strategy Nash equilibrium
Agenda

- What is game theory
- Examples
 - Prisoner’s dilemma
 - The battle of the sexes
 - Matching pennies
- Static (or simultaneous-move) games of complete information
- Normal-form or strategic-form representation
What is game theory?

- We focus on games where:
 - There are at least two rational players
 - Each player has more than one choices
 - The outcome depends on the strategies chosen by all players; there is strategic interaction

Example: Six people go to a restaurant.
- Each person pays his/her own meal – a simple decision problem
- Before the meal, every person agrees to split the bill evenly among them – a game
What is game theory?

- **Game theory** is a formal way to analyze strategic interaction among a group of rational players (or agents) who behave strategically.

- Game theory has applications:
 - Economics
 - Politics
 - etc.
Classic Example: Prisoners’ Dilemma

- Two suspects **held in separate cells** are charged with a major crime. However, there is not enough evidence.
- Both suspects are told the following policy:
 - If neither confesses then both will be convicted of a minor offense and sentenced to one month in jail.
 - If both confess then both will be sentenced to jail for six months.
 - If one confesses but the other does not, then the confessor will be released but the other will be sentenced to jail for nine months.

<table>
<thead>
<tr>
<th></th>
<th>Confess</th>
<th>Mum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prisoner 1</td>
<td>0 ⏞ -9</td>
<td>-1 ⏞ -1</td>
</tr>
<tr>
<td>Prisoner 2</td>
<td>-6 ⏞ -6</td>
<td>-9 ⏞ 0</td>
</tr>
</tbody>
</table>
Example: The battle of the sexes

- At the separate workplaces, Chris and Pat must choose to attend either an opera or a prize fight in the evening.

- Both Chris and Pat know the following:
 - Both would like to spend the evening together.
 - But Chris prefers the opera.
 - Pat prefers the prize fight.
Example: Matching pennies

- Each of the two players has a penny.
- Two players must **simultaneously** choose whether to show the Head or the Tail.
- Both players know the following rules:
 - If two pennies match (both heads or both tails) then player 2 wins player 1’s penny.
 - Otherwise, player 1 wins player 2’s penny.

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>-1, 1</td>
</tr>
<tr>
<td>Tail</td>
<td>1, -1</td>
</tr>
</tbody>
</table>
Static (or simultaneous-move) games of complete information

A static (or simultaneous-move) game consists of:

- A set of players (at least two players)
- For each player, a set of strategies/actions
- Payoffs received by each player for the combinations of the strategies, or for each player, preferences over the combinations of the strategies

\[
\{\text{Player 1, Player 2, ... Player } n\} \\
S_1 \ S_2 \ ... \ S_n \\
u_i(s_1, s_2, ...s_n), \text{ for all } s_1 \in S_1, s_2 \in S_2, ... \ s_n \in S_n.
\]
Static (or simultaneous-move) games of complete information

- Simultaneous-move
 - Each player chooses his/her strategy without knowledge of others’ choices.

- Complete information
 - Each player’s strategies and payoff function are common knowledge among all the players.

- Assumptions on the players
 - Rationality
 - Players aim to maximize their payoffs
 - Players are perfect calculators
 - Each player knows that other players are rational
Static (or simultaneous-move) games of complete information

- The players cooperate?
 - No. Only noncooperative games

- The timing
 - Each player i chooses his/her strategy s_i without knowledge of others’ choices.
 - Then each player i receives his/her payoff $u_i(s_1, s_2, ..., s_n)$.
 - The game ends.
Definition: normal-form or strategic-form representation

The normal-form (or strategic-form) representation of a game G specifies:

- A finite set of players $\{1, 2, ..., n\}$,
- players’ strategy spaces S_1 S_2 $...$ S_n and
- their payoff functions u_1 u_2 $...$ u_n

where $u_i : S_1 \times S_2 \times ... \times S_n \rightarrow R$.

Normal-form representation: 2-player game

- Bi-matrix representation
 - 2 players: Player 1 and Player 2
 - Each player has a finite number of strategies
- Example:
 \[S_1 = \{ s_{11}, s_{12}, s_{13} \} \quad S_2 = \{ s_{21}, s_{22} \} \]

<table>
<thead>
<tr>
<th>Player 1</th>
<th>(\text{s}_{21})</th>
<th>(\text{s}_{22})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{s}_{11})</td>
<td>(u_1(s_{11}, s_{21})), (u_2(s_{11}, s_{21}))</td>
<td>(u_1(s_{11}, s_{22})), (u_2(s_{11}, s_{22}))</td>
</tr>
<tr>
<td>(\text{s}_{12})</td>
<td>(u_1(s_{12}, s_{21})), (u_2(s_{12}, s_{21}))</td>
<td>(u_1(s_{12}, s_{22})), (u_2(s_{12}, s_{22}))</td>
</tr>
<tr>
<td>(\text{s}_{13})</td>
<td>(u_1(s_{13}, s_{21})), (u_2(s_{13}, s_{21}))</td>
<td>(u_1(s_{13}, s_{22})), (u_2(s_{13}, s_{22}))</td>
</tr>
</tbody>
</table>
Classic example: Prisoners’ Dilemma: normal-form representation

- **Set of players:** \{Prisoner 1, Prisoner 2\}
- **Sets of strategies:** \(S_1 = S_2 = \{\text{Mum, Confess}\} \)
- **Payoff functions:**

\[
\begin{align*}
 u_1(\text{Mum}, \text{Mum}) &= -1, \\
 u_1(\text{Mum}, \text{Confess}) &= -9, \\
 u_1(\text{Confess}, \text{Mum}) &= 0, \\
 u_1(\text{Confess}, \text{Confess}) &= -6; \\
 u_2(\text{Mum}, \text{Mum}) &= -1, \\
 u_2(\text{Mum}, \text{Confess}) &= 0, \\
 u_2(\text{Confess}, \text{Mum}) &= -9, \\
 u_2(\text{Confess}, \text{Confess}) &= -6
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>Mum</th>
<th>Confess</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mum</td>
<td>-1, -1</td>
<td>-9, 0</td>
</tr>
<tr>
<td>Confess</td>
<td>0, -9</td>
<td>-6, -6</td>
</tr>
</tbody>
</table>
Example: The battle of the sexes

- Normal (or strategic) form representation:
 - Set of players: \{Chris, Pat\} (=\{Player 1, Player 2\})
 - Sets of strategies: \(S_1 = S_2 = \{\text{Opera}, \text{Prize Fight}\}\)
 - Payoff functions:
 \[
 u_1(O, O)=2, \ u_1(O, F)=0, \ u_1(F, O)=0, \ u_1(F, F)=1;
 u_2(O, O)=1, \ u_2(O, F)=0, \ u_2(F, O)=0, \ u_2(F, F)=2
 \]
Example: Matching pennies

- **Normal (or strategic) form representation:**
 - Set of players: \{Player 1, Player 2\}
 - Sets of strategies: \(S_1 = S_2 = \{ \text{Head, Tail} \} \)
 - Payoff functions:
 - \(u_1(H, H) = -1, \ u_1(H, T) = 1, \ u_1(T, H) = 1, \ u_1(H, T) = -1 \)
 - \(u_2(H, H) = 1, \ u_2(H, T) = -1, \ u_2(T, H) = -1, \ u_2(T, T) = 1 \)

<table>
<thead>
<tr>
<th></th>
<th>Player 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Head</td>
<td>Tail</td>
</tr>
<tr>
<td>Head</td>
<td>-1, 1</td>
<td>1, -1</td>
</tr>
<tr>
<td>Tail</td>
<td>1, -1</td>
<td>-1, 1</td>
</tr>
</tbody>
</table>
Example: Tourists & Natives

- Only two bars (bar 1, bar 2) in a city
- Can charge price of $2, $4, or $5
- 6000 tourists pick a bar randomly
- 4000 natives select the lowest price bar

Example 1: Both charge $2
 - each gets 5,000 customers and $10,000

Example 2: Bar 1 charges $4, Bar 2 charges $5
 - Bar 1 gets 3000+4000=7,000 customers and $28,000
 - Bar 2 gets 3000 customers and $15,000
Example: Cournot model of duopoly

- A product is produced by only two firms: firm 1 and firm 2. The quantities are denoted by q_1 and q_2, respectively. Each firm chooses the quantity without knowing the other firm has chosen.
- The market price is $P(Q)=a-Q$, where $Q=q_1+q_2$.
- The cost to firm i of producing quantity q_i is $C_i(q_i)=cq_i$.

The normal-form representation:
- Set of players: \{Firm 1, Firm 2\}
- Sets of strategies: $S_1=[0, +\infty)$, $S_2=[0, +\infty)$
- Payoff functions:

 $u_1(q_1, q_2)=q_1(a-(q_1+q_2)-c)$, $u_2(q_1, q_2)=q_2(a-(q_1+q_2)-c)$
One More Example

- Each of n players selects a number between 0 and 100 simultaneously. Let x_i denote the number selected by player i.
- Let y denote the average of these numbers
- Player i’s payoff $= x_i - 3y/5$
- The normal-form representation:
Solving Prisoners’ Dilemma

- Confess always does better whatever the other player chooses
- Dominated strategy
 - There exists another strategy which always does better regardless of other players’ choices

\[
\begin{array}{c|cc}
\text{Prisoner 1} & \text{Mum} & \text{Confess} \\
\hline
\text{Mum} & (-1, -1) & (-9, 0) \\
\text{Confess} & (0, -9) & (-6, -6) \\
\end{array}
\]
Definition: strictly dominated strategy

In the normal-form game \(\{ S_1, S_2, ..., S_n, u_1, u_2, ..., u_n \} \), let \(s_i', s_i'' \in S_i \) be feasible strategies for player \(i \). Strategy \(s_i' \) is strictly dominated by strategy \(s_i'' \) if

\[
u_i(s_1, s_2, ..., s_{i-1}, s_i', s_{i+1}, ..., s_n) < u_i(s_1, s_2, ..., s_{i-1}, s_i'', s_{i+1}, ..., s_n)\]

for all \(s_1 \in S_1, s_2 \in S_2, ..., s_{i-1} \in S_{i-1}, s_{i+1} \in S_{i+1}, ..., s_n \in S_n \).

\[
\begin{array}{cc|cc}
\text{Prisoner 1} & \text{Mum} & \text{Confess} \\
\hline
\text{Mum} & -1, -1 & -9, 0 \\
\text{Confess} & 0, -9 & -6, -6 \\
\end{array}
\]

\(s_i'' \) is strictly better than \(s_i' \) regardless of other players’ choices.
Summary

- Static (or simultaneous-move) games of complete information
- Normal-form or strategic-form representation

Next time
- Dominated strategies
- Iterated elimination of strictly dominated strategies
- Nash equilibrium

Reading lists