Les badlands : une source majeure de sédiments et de carbone organique particulier d’origine géologique dans les rivières

Parmi les formes du carbone organique particulier transféré depuis les surfaces continentales jusqu’aux océans, celle d’origine fossile (COPf) contribue à hauteur de 20 à 25 % à la charge particulaire organique. Cependant des inconnus persistent notamment sur (i) la nature des roches sédimentaires, (ii) leur teneur en C organique et (iii) leur distribution spatiale. Ainsi à partir d’analyses géochimiques et isotopiques ainsi que de plusieurs bases de données portant sur des matières en suspension et laisses de crue, nous avons démontré que les badlands du bassin versant de la Durance et recouvrant à peine 0.2 % de la surface du bassin versant du Rhône, peuvent être considérés comme des hot-spots majeurs de libération de sédiments et de carbone organique fossile dans les rivières.

En effet, ils fournissent à la Méditerranée 15 et 3 % du flux sédimentaire et de COP. Un coefficient de pondération, restituant l’importance de ces flux journaliers au flux annuel correspondant, a été calculé pour chaque échantillon et a permis, en estimant des âges moyens de fraction non fossile, d’estimer le ratio COPf / COP à 26 % pour le Rhône, 49 % pour la Durance et 93 % pour les badlands. Ainsi, le flux annuel de COPf atteint de 38 +/- 15 kt (Rhône), 6 +/- 3 kt (Durance) et 4.5 +/- 1.5 kt (badlands). Enfin, nous avons pu calculer que ces badlands contribuent à près de 75 % à la charge en COPf à l’exutoire de la Durance et 12 % au COPf exportée vers le Golfe du Lion.

A une échelle globale, les badlands devraient être considérés comme des "hot-spots" continentaux responsables de la libération massive des sédiments et de COPf dans les fleuves et par conséquent marquant significativement l’empreinte géochimique des sédiments fluviales apportés par les surfaces continentales aux océans.

Enfin, ce carbone étant considéré comme réfractaire, il doit être préservé dans les sédiments marins. La prise en compte de cette composante fossile devrait modifier la vision que nous avons de la dynamique du COP à l’interface continent / océan.

10.1002/esp.4409
http://www.insu.cnrs.fr/node/9208
Articles « M2C » du 3ème trimestre 2018


